

Physics-technological institute metals and alloys of the National academy of sciences of Ukraine

Casting high durability unsparkling copper alloy for the poured safe on the explosion instrument

Scientific leader Corresponding member of NAN of Ukraine of V.P.Gavrilyuk Responsible performer Ph. D. Loktionov-Remizovskiy V.A.

Purpose of work:

To define the level of properties of casting titanic bronze and possibility of development on its basis of unsparkling alloy on replacement of beryllium bronze, for making of poured safe on the explosion hand ocksmithl instrument

Application domain

Making of safe on the explosion poured ocksmithl and safe on the explosion technological rigging which apply at works on production areas in which on the terms of technological process or the explosive can appear because of failure mixtures of combustible gases or steams of all categories and groups inflammability on classification of productions apartments

Task of researches

To define influencing of maintenance of titan and parameters of thermal treatments on a structure and properties of titanic bronze, and to define technological descriptions of bronze.

Properties of standard alloys for a safe on the explosion instrument

It is easily Soiled alloy	Mechan	Type of the made instrument		
	Durability at tension, MPa	Shock viscidity, KDg/sm2	The HB Hardness MPa	
ВБ-1 ТУ 2-18-246-83	690 - 833	19 - 30	2500 - 3100	Wrenches
ВБ-2 ТУ 2-035-1030-86			1300 - 3500	Points-Tool
ВБ-3 ТУ 2-035-1031-86	500-600	20-30	2000-2400	Hammers and sledge- hammers
БрБ2 ГОСТ 18175-78	700 – 1300	30 - 40	1500 - 3900	All types of ocksmithl instrument

Chemical composition of standard alloys for a safe on the explosion instrument

It Is	Химический состав, % мас.													
Easily Soiled	Al N	Ni	Ni Cr	Zn	Mn	Fe	Si	Modifier		Admixtures				Cu
Alloy								Zr	Ti	Pb	P	Fe	Si	
ВБ1	11,5 -12,1	7,5 -8,2	0,5 -0,7	-	-	-	-	0,25 -0,35	-	-	0,05	0,2	-	Other
ВБ2	0,8 -1,5	19 -21	0,5	16 -20	18 -21	-	-	-	0,2	-	-	0,2	0,1	Other
ВБЗ	6,4 -7,2	-	-	Ot her	0,5 -1,0	0,5 -1,0	0,2 -0,5	-	-	0,1	0,1	No m all admix	ore 0,5 xtures	67-70

Other

TiN

Structure of experimental bronze

Microstructures of bronze in the poured state, x200 a-1,26% Ti; b-3,74% Ti; c-4,38% Ti; d-5,62% Ti.

Structure after tempering , x200 Ti – 5,62%

Structure of bronze (Ti-4,5%) alloyed by zirconium (0,5%) and by a chrome (0,5%) after tempering, x 200

Mechanical and technological properties experimental titanic bronze

The state of	Mecha	nical prope	Technological properties			
standard	Durability at tension, MPa	Shock viscidity, KDg	The HB hardness MPa	Gidkotekuchest on a spiral test, mm	By A Volume(lin ear) usadka %	
Poured	740	31,4	2600	450	8,54 (2,1)	
After tempering	540	21,0	1530			
After the senescence and ukova on 10%	1150	19,5	3500			

Influencing of thickness of wall of founding on hardness of titanic bronzi

1 - the poured state 2 – after tempering 3 – after the senescence

Properties of the standard VB alloys and titanic bronze

Making of the poured purveyances from a titanic bronze

Casting models hammer and key

Founding of wrench of nut and hammer

Sparkling at treatment by an abrasive stone

Steel hammer

Hammer from a titanic bronze

